$\mathrm{Bi}_{2} \mathrm{AuO}_{5}$ and $\mathrm{Bi}_{4} \mathrm{Au}_{2} \mathrm{O}_{9}$, Two Novel Ternary Oxoaurates

Jutta Geb and Martin Jansen ${ }^{1}$
Institut für Anorganische Chemie der Universität Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany

Received September 7, 1995; in revised form December 19, 1995; accepted December 20, 1995

Abstract

$\mathrm{Bi}_{2} \mathrm{AuO}_{5}$ and $\mathrm{Bi}_{4} \mathrm{AuO}_{9}$, the first ternary bismuth aurates, have been synthesized applying hydrothermal conditions (aqueous solution of KOH as a mineralizer). $\mathrm{Bi}_{2} \mathrm{AuO}_{5}$ crystallizes in space group $P 4 / n c c$ with four formula units in the unit cell of the dimensions $a=8.6703(4) \AA, c=6.0301(3) \AA$. The structure consists of square planar AuO_{4} units which are stacked to form columns parallel to [001]. They are linked to build a three-dimensional network by eightfold-coordinated bismuth atoms. $\mathrm{Bi}_{4} \mathrm{Au}_{2} \mathrm{O}_{9}$ crystallizes in the orthorhombic crystal system; Pcab, $a=5.889(1) \AA$, $b=8.847(2) \AA, c=$ 34.674(6) $\AA, Z=8$. The structure can be derived from $\mathrm{Bi}_{2} \mathrm{AuO}_{5}$ by quadrupling the a axis and removing half of the oxygen atom $\mathrm{O}(2)$. The structural relations of both compounds to $\mathrm{Bi}_{2} \mathrm{CuO}_{4}$ will be discussed. © 1996 Academic Press, Inc.

INTRODUCTION

Up to now, only a few ternary bismuth oxides with cations of noble metals are known. There are reports on $\mathrm{Bi}_{2} \mathrm{Ru}_{2} \mathrm{O}_{7}, \mathrm{Bi}_{2} \mathrm{Ir}_{2} \mathrm{O}_{7}$ (1), $\mathrm{Bi}_{2} \mathrm{Pt}_{2} \mathrm{O}_{7}$ (2), and $\mathrm{Bi}_{2} \mathrm{Rh}_{2} \mathrm{O}_{6.8}$, which crystallize in a pyrochlor type of structure, as well as on BiRhO_{3} (3), which forms a perovskite structure. Recently, the syntheses of the silver bismuthates $\mathrm{Ag}_{3} \mathrm{BiO}_{3}$ (4), $\mathrm{Ag}_{5} \mathrm{BiO}_{4}$ (4), and $\mathrm{Ag}_{25} \mathrm{Bi}_{3} \mathrm{O}_{18}$ (5) were achieved by application of high oxygen pressure. AgBiO_{3}, which is formed by ion exchange of KBiO_{3} (6), was synthesized for the first time in 1941. Apart from these compounds, in which the noble metal cation is coordinated octahedrally or linearly by oxygen, there are two more compounds $\mathrm{Bi}_{2} \mathrm{MO}_{4}(M=\mathrm{Pd}, \mathrm{Cu})(7-10)$ which contain Pd or Cu in a square planar coordination. So far, ternary oxides with bismuth and gold have not been known. Since the d^{8} configurated ion Au^{3+} also prefers a square planar coordination it should be possible to synthesize a compound of a composition like $\mathrm{Bi}_{2} \mathrm{AuO}_{4+x}$, in which the bismuth cuprate structure is preserved. The oxygen ion necessary for the charge neutrality could be accomodated at spacings within the $\mathrm{Bi}_{2} \mathrm{CuO}_{4}$ type of structure.

[^0]
EXPERIMENTAL

Syntheses, starting materials. $\mathrm{Bi}_{4} \mathrm{Au}_{2} \mathrm{O}_{9}$ and $\mathrm{Bi}_{2} \mathrm{AuO}_{5}$ were synthesized at hydrothermal conditions applying high oxygen pressures. Amorphous $\mathrm{Bi}_{2} \mathrm{O}_{5}$ and $\mathrm{Au}_{2} \mathrm{O}_{3} \cdot x \mathrm{H}_{2} \mathrm{O}$ ($x=2-3$) were used as starting materials. $\mathrm{Au}_{2} \mathrm{O}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ was prepared as described in (11) from elemental gold (Degussa, 99.99%). The content of gold was proven by thermal decomposition to be 82.14% (calculated for $\mathrm{Au}_{2} \mathrm{O}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}: 82.42 \%$). In order to prepare $\mathrm{Bi}_{2} \mathrm{O}_{5}$, first $\mathrm{Bi}_{2} \mathrm{O}_{3}$ (Merck, p.a.) was oxidized with bromine (Merck, p.a.) in a saturated aqueous solution of NaOH to get NaBiO_{3} which was converted to $\mathrm{Bi}_{2} \mathrm{O}_{5}$ as described by Scholder and Stobbe (6). The bismuth content was determined by titration of a solution of the bismuth oxide in nitric acid with Titriplex and pyrogallolred as indicator (12) (found, 80.3%; calculated, 83.93%). $\mathrm{Bi}_{2} \mathrm{O}_{5}$ and Au_{2} $\mathrm{O}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ were mixed intimately and placed in a gold tube. Because the gold tube was always attacked during the reaction the amount of $\mathrm{Au}_{2} \mathrm{O}_{3} \cdot x \mathrm{H}_{2} \mathrm{O}$ in the starting mixture has to be ca. 3% below the precise value. As a mineralizer 0.3 ml of a 40% aqueous solution of KOH (Aldrich, 99.99%) was added. The tube was closed permeable to gas and transferred into a steel autoclave. The reaction to Bi_{4} $\mathrm{Au}_{2} \mathrm{O}_{9}$ took place at $400^{\circ} \mathrm{C}$ and an oxygen pressure of 3 kbar. In order to obtain $\mathrm{Bi}_{2} \mathrm{AuO}_{5}$, the conditions were changed to $280^{\circ} \mathrm{C}$ and to a pressure of 5 kbar . At intermediate temperatures and pressures both phases formed simultaneously. After a reaction period of 3 days the autoclave was cooled to room temperature. To remove KOH the crude product was washed with water and subsequently dried in an desiccator over $\mathrm{P}_{4} \mathrm{O}_{10}$ for 3 days.

Under these reaction conditions, powders of $\mathrm{Bi}_{2} \mathrm{AuO}_{5}$ and single crystals of $\mathrm{Bi}_{4} \mathrm{Au}_{2} \mathrm{O}_{9}$ were obtained. In order to prepare single crystals of $\mathrm{Bi}_{2} \mathrm{AuO}_{5}$, the bismuth (V) oxide was covered with a surplus of colloidal gold (11) and treated as described above. Impurities other than $\alpha-\mathrm{Bi}_{2} \mathrm{O}_{3}$ and elemental gold could not be detected.

Structure determinations. For X-ray structure determinations crystals of $\mathrm{Bi}_{2} \mathrm{AuO}_{5}$ (size: $0.021 \times 0.021 \times 0.0498$ mm) and $\mathrm{Bi}_{4} \mathrm{Au}_{2} \mathrm{O}_{9}$ (size: $0.481 \times 0.011 \times 0.003 \mathrm{~mm}$) were

TABLE 1
Crystal Data and Structure Refinement for $\mathrm{Bi}_{2} \mathrm{AuO}_{5}$ and $\mathrm{Bi}_{4} \mathrm{Au}_{2} \mathrm{O}_{9}$

Formula	$\mathrm{Bi}_{2} \mathrm{AuO}_{5}$	$\mathrm{Bi}_{4} \mathrm{Au}_{2} \mathrm{O}_{9}$
Formula weight $\left(\mathrm{g} \cdot \mathrm{mol}^{-1}\right)$	694.93	1373.85
Space group	$P 4 / n c c(\mathrm{No.130})$	$P c a b(\mathrm{No} 61)$.
Unit cell dimensions (\AA)	$a=8.6703(4)$	$a=5.889(1)$
	$b=8.6703(4)$	$b=8.847(2)$
	$c=6.0301(3)$	$c=34.674(6)$
Crystal size (mm)	$0.0166 \times 0.0166 \times 0.0498$	$0.4815 \times 0.0110 \times 0.0034$
Volume $\left(\AA^{3}\right)$	$453.31(4)$	$1807.0(2)$
Z	4	8
$D_{\text {calc }}\left(\mathrm{g} \cdot \mathrm{cm}^{-3}\right)$	10.183	10.103
μ Mo $\alpha \alpha\left(\mathrm{cm}^{-1}\right)$	1096.5	1100.45
$F(000)$	1140	4496
Theta range for data collection [$\left.{ }^{\circ}\right]$	$3.32 \leq \theta \leq 35.02$	$1.17 \leq \theta \leq 29.98$
Index ranges	$-14 \leq h \leq 4,-13 \leq k \leq 14$,	$0 \leq h \leq 8,-8 \leq k \leq 12$,
	$-9 \leq l \leq 9$	$-48 \leq l \leq 48$
No. of reflections measured	3807	6840
No. of unique reflections	$496[R($ int $)=0.1042]$	$2632[R($ int $)=0.0688]$
Corrections	Lorentz-Polarization	Lorentz-Polarization
	numerical absorption	numerical absorption
Parameters	21	137
$R 1$	7.32	4.51
wR2	17.03	12.13
Extinction coefficient	$0.0015(5)$	$0.00010(2)$

selected. From film methods the space groups $P 4 / n c c$ and Pcab were derived for $\mathrm{Bi}_{2} \mathrm{AuO}_{5}$ and $\mathrm{Bi}_{4} \mathrm{Au}_{2} \mathrm{O}_{9}$, respectively. Room temperature intensity data collections were carried out on an Enraf Nonius CAD4 automatic fourcircle diffractometer (graphite-monochromated $\mathrm{Mo} K \alpha$ radiation, $\lambda=0.71073 \AA$). Crystal data and experimental details of the structure determinations are listed in Table 1. The cell parameters used in all calculations were determined from X-ray powder patterns (c.f. Table 2, StoeStadi P diffractometer, germanium monochromator on the primary beam, $\mathrm{Cu} K \alpha_{1}$ radiation $(\lambda=1.54056 \AA), \mathrm{Si}$ as an external standard) using Stoe-Stadi P software.

For data reduction the program CADSHEL (13) was used. A numerical absorption correction (HABITUS (14)) was applied to both data sets. Neutral-atom scattering factors were taken from the "International Tables for X-Ray Crystallography" (15). The localization of the heavy atoms was achieved by Patterson methods using the program SHELXS-86 (16). Determination of the oxygen atom positions and final structure refinements were carried out by difference Fourier synthesis and least squares methods by SHELXL-93 (17). The structure plots were prepared using KPLOT (18).

Analyses. The cation ratio in the crystals was determined by energy dispersive X-ray analyses using an electron microscope (Zeiss DSM 940) equipped with EDX (EDAX PV9800). Difference thermal and thermogravimetric analyses were performed on a Netsch STA 429
(heating rate, $5 \mathrm{~K} / \mathrm{min}$; reference, high purity $\alpha-\mathrm{Al}_{2} \mathrm{O}_{3}$; Ar atmosphere). The decomposition products were identified by X-ray powder investigations.

RESULTS

$\mathrm{Bi}_{4} \mathrm{Au}_{2} \mathrm{O}_{9}$ and $\mathrm{Bi}_{2} \mathrm{AuO}_{5}$, two novel ternary bismuthgold oxides, were obtained by hydrothermal reaction of amorphous $\mathrm{Bi}_{2} \mathrm{O}_{5}$ and $\mathrm{Au}_{2} \mathrm{O}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ applying high oxygen pressures. $\mathrm{Bi}_{4} \mathrm{Au}_{2} \mathrm{O}_{9}$ forms red, needle shaped crystals. $\mathrm{Bi}_{2} \mathrm{AuO}_{5}$ crystallizes as black, tetragonal prisms which highly tend to form twins. The X-ray powder diffractogram of both substances show additional peaks of low intensity from bismuth oxide $\left(\alpha-\mathrm{Bi}_{2} \mathrm{O}_{3}\right)$. Both substances are insensitive to air, humidity, and exposure to daylight. The cation composition was proven by EDX analyses $\left(\mathrm{Bi}_{4} \mathrm{Au}_{2} \mathrm{O}_{9}, \mathrm{Bi}: \mathrm{Au}=2: 0.99 ; \mathrm{Bi}_{2} \mathrm{AuO}_{5}, \mathrm{Bi}: \mathrm{Au}=2: 1.01\right.$; calculated as a mean of 10 spot analyses). The content of potassium was below the limit of the detectibility of 0.3%. The substances decompose at $673 \mathrm{~K}\left(\mathrm{Bi}_{4} \mathrm{Au}_{2} \mathrm{O}_{9}\right)$ and $586 \mathrm{~K}\left(\mathrm{Bi}_{2} \mathrm{AuO}_{5}\right)$ to $\alpha-\mathrm{Bi}_{2} \mathrm{O}_{3}$ and elemental gold. Thermogravimetric analyses of a sample of $\mathrm{Bi}_{2} \mathrm{AuO}_{5}$, which showed only slight impurities of elemental gold gave a loss of oxygen of $3.99 \mathrm{wt} \%$ (calculated for Bi_{2} $\mathrm{AuO}_{5}, 4.6 \mathrm{wt} \%$). This corresponds to an empirical formula of $\mathrm{Bi}_{2} \mathrm{AuO}_{4.73}$.

The results of the crystal structure determination

TABLE 2
X-Ray Pattern of $\mathrm{Bi}_{2} \mathrm{AuO}_{5}$ and $\mathrm{Bi}_{4} \mathrm{Au}_{2} \mathrm{O}_{9}, d(\AA), \lambda=1.54056 \AA, T=273 \mathrm{~K}$

$\mathrm{Bi}_{2} \mathrm{AuO}_{5}$						$\mathrm{Bi}_{4} \mathrm{Au}_{2} \mathrm{O}_{9}$					
h	k	l	$I_{0} / I_{\text {max }}$	d_{0}	$d_{\text {c }}$	h	k	l	$I_{0} / I_{\text {max }}$	d_{0}	$d_{\text {c }}$
1	1	0	8.4	6.1303	6.1308	0	1	4	9.4	6.1996	6.1928
2	1	1	100.0	3.2606	3.2614	1	1	1	1.8	4.8485	4.8540
2	2	0	15.5	3.0653	3.0654	0	1	6			4.8393
0	0	2	8.6	3.0143	3.0151	0	2	2	4.6	4.2878	4.2865
1	0	2	17.0	2.8473	2.8478	1	1	6	2.6	3.7417	3.7388
3	1	0	46.5	2.7417	2.7418	1	2	4	100.0	3.2762	3.2750
1	1	2	15.5	2.7052	2.7056	1	1	8	77.2	3.2502	3.2477
2	0	2	16.6	2.4750	2.4753	0	2	8	17.1	3.0997	3.0964
2	1	2	9.9	2.3799	2.3802	2	0	0	26.0	2.9442	2.9445
3	2	1	2.2	2.2336	2.2337	1	2	7	3.5	2.8788	2.8788
4	0	0	0.4	2.1675	2.1676	2	0	3	4.4	2.8516	2.8534
3	0	2	2.6	2.0864	2.0864	2	1	0	54.2	2.7936	2.7938
3	3	0	2.4	2.0437	2.0436	0	3	4			2.7921
3	1	2	4.2	2.0285	2.0285	0	1	12	32.7	2.7511	2.7474
4	1	1	15.9	1.9857	1.9856	0	3	5	15.1	2.7102	2.7141
4	2	0	11.2	1.9389	1.9387	2	0	5			2.7104
3	2	2	5.5	1.8800	1.8800	2	1	4	29.7	2.6594	2.6592
2	1	3	14.9	1.7844	1.7845	0	3	6	3.4	2.6237	2.6270
4	0	2	9.0	1.7600	1.7600	2	0	6			2.6237
4	1	2	4.0	1.7248	1.7248	1	0	12	4.6	2.5916	2.5947
5	1	0	1.8	1.7005	1.7004	2	1	5			2.5915
3	3	2	14.1	1.6916	1.6916	1	3	3	3.4	2.5699	2.5709
5	2	1	8.9	1.5557	1.5555	0	2	11			2.5676
4	4	0	2.7	1.5329	1.5327	0	0	14	3.6	2.4777	2.4774
4	3	2	3.5	1.5035	1.5032	1	2	10			2.4764
5	3	0	4.0	1.4866	1.4869	2	2	0	19.5	2.4513	2.4511
5	1	2	1.6	1.4811	1.4811	0	3	8	16.4	2.4362	2.4385
1	1	4	1.7	1.4638	1.4639	2	0	8			2.4358
4	1	3	2.9	1.4530	1.4530	2	1	7			2.4336
6	0	0	3.9	1.4451	1.4451	1	3	6	8.1	2.3989	2.3991
2	0	4	1.9	1.4238	1.4239	2	2	3			2.3978
5	2	2	2.2	1.4202	1.4202	0	0	15	4.1	2.3117	2.3123
6	0	1	1.3	1.4051	1.4053	2	2	5			2.3111
2	1	4			1.4051	2	1	9	4.3	2.2614	2.2620
6	2	1	0.4	1.3367	1.3368	2	2	6	3.7	2.2543	2.2567
3	0	4			1.3366	1	3	8			2.2530
5	4	1	3.1	1.3212	1.3212	1	2	12	3.0	2.2399	2.2381
3	1	4			1.3210	0	4	0	2.3	2.2130	2.2119
6	0	2	1.1	1.3031	1.3031	1	1	14			2.2111
6	1	2	0.8	1.2887	1.2886	2	2	7	1.8	2.1956	2.1970
3	2	4	1.0	1.2773	1.2773	0	4	2			2.1941
5	2	3	3.0	1.2566	1.2566	0	4	3	2.2	2.1722	2.1725
6	2	2	1.7	1.2480	1.2480	1	3	10	1.9	2.1007	2.0992
7	0	0	1.7	1.2377	1.2386	2	3	1	2.3	2.0803	2.0800
4	0	4			1.2376	2	3	2	4.6	2.0666	2.0688

(atomic parameters, equivalent thermal parameters, and interatomic distances) are documented in Tables 3-6. ${ }^{2}$

The refinement of the anisotropic temperature factors for $\mathrm{O}(2)$ for $\mathrm{Bi}_{2} \mathrm{AuO}_{5}$ led to the extremely high value of $0.5 \AA^{2}$ for U_{11} and U_{22}, indicating that this site may be occupied only partly, or that the crystal might be a
${ }^{2}$ Further details of the structure determination have been deposited as supplementary publication No. CSD-59143 for $\mathrm{Bi}_{2} \mathrm{AuO}_{5}$ and $\mathrm{Bi}_{4} \mathrm{Au}_{2} \mathrm{O}_{9}$. Copies may be obtained through Fachinformationszentrum Karlsruhe, Gesellschaft fur wissenschaftlich technische Information mbH, D-76344 Eggenstein-Leopoldshafen, Germany.

TABLE 3
Atomic Coordinates and Equivalent Thermal Parameters ${ }^{a}$ $\left(\AA^{2}\right)$ for $\mathrm{Bi}_{2} \mathrm{AuO}_{5}$

	Wyckoff notation	x	y	z	$U_{\mathrm{eq}}{ }^{a}$
Atom					
$\mathrm{Bi}(1)$	$8 f$	$0.09201(0)$	$0.9080(1)$	0.25	$0.023(1)$
$\mathrm{Au}(1)$	$4 c$	0.25	0.25	$0.0861(3)$	$0.013(1)$
$\mathrm{O}(1)$	$16 f$	$0.158(2)$	$0.351(3)$	$0.095(4)$	$0.025(4)$
$\mathrm{O}(2)$	$4 a$	0.25	0.75	0.0	$0.05(1)$

[^1]TABLE 4
Atomic Coordinates and Equivalent Thermal Parameters ${ }^{a}$ [\AA^{2}] for $\mathrm{Bi}_{4} \mathrm{Au}_{2} \mathrm{O}_{9}$

	Wyckoff notation	x	y	z	$U_{\text {eq }}{ }^{a}$
Atom					
$\mathrm{Bi}(1)$	$8 c$	$0.7723(2)$	$0.5809(1)$	$0.1029(1)$	$0.008(1)$
$\mathrm{Bi}(2)$	$8 c$	$-0.2735(2)$	$0.3817(1)$	$0.2298(1)$	$0.009(1)$
$\mathrm{Bi}(3)$	$8 c$	$0.2491(2)$	$0.5725(1)$	$0.5249(1)$	$0.009(1)$
$\mathrm{Bi}(4)$	$8 c$	$0.2678(2)$	$0.3988(1)$	$0.1528(1)$	$0.009(1)$
$\mathrm{Au}(1)$	$8 c$	$0.1019(2)$	$0.2489(1)$	$0.0600(1)$	$0.007(1)$
$\mathrm{Au}(2)$	$8 c$	$0.9283(2)$	$0.7575(1)$	$0.1821(1)$	$0.006(1)$
$\mathrm{O}(1)$	$8 c$	$0.093(3)$	$0.361(2)$	$0.0092(5)$	$0.007(3)$
$\mathrm{O}(2)$	$8 c$	$0.123(3)$	$0.456(2)$	$0.0830(5)$	$0.008(3)$
$\mathrm{O}(3)$	$8 c$	$0.535(3)$	$0.235(2)$	$0.1916(4)$	$0.012(3)$
$\mathrm{O}(4)$	$8 c$	$0.903(3)$	$0.680(2)$	$0.2365(5)$	$0.010(3)$
$\mathrm{O}(5)$	$8 c$	$0.947(3)$	$0.846(2)$	$0.1290(5)$	$0.010(3)$
$\mathrm{O}(6)$	$8 c$	$0.896(3)$	$0.965(2)$	$0.2023(5)$	$0.008(3)$
$\mathrm{O}(7)$	$8 c$	$0.927(3)$	$0.548(2)$	$0.1575(5)$	$0.008(3)$
$\mathrm{O}(8)$	$8 c$	$0.143(3)$	$0.146(2)$	$0.1110(5)$	$0.010(3)$
$\mathrm{O}(9)$	$8 c$	$0.090(3)$	$0.044(2)$	$0.0340(5)$	$0.010(3)$

$$
{ }^{a} U_{\mathrm{eq}}=\frac{1}{3}\left(U_{11}+U_{22}+U_{33}\right) .
$$

superposition of two orthorhombic individuals. Alternating refinements of the occupation factor and the anisotropic temperature factors for $\mathrm{O}(2)$ were made, but resulted in only slightly improved temperature factors with an extremely high standard deviation. An attempt to solve the problem by using a program for refinement of twined crystals failed. However, a restriction of the data set to reflections between $d=0.69 \AA$ and $d=$ $1.39 \AA$ (observ./parameter $=15.2: 1$) leads to much more realistic values ($\left.U_{11}=U_{22}=0.05(2)\right)$.

DISCUSSION

In the crystal structure of $\mathrm{Bi}_{2} \mathrm{AuO}_{5}$ gold occupys a special position of site symmetry 4 . It is coordinated by four oxygen atoms forming a regular square planar unit, confirming the oxidation state of $3+$ for gold. The $\mathrm{Au}-\mathrm{O}$ bond length is 2.00 (2) \AA, which matches those found in other ternary aurates. The AuO_{4} units are stacked along [001], and they are twisted to each other by 22.5°. The resulting isolated columns of AuO_{4} units are connected by bismuth atoms in such a way that each Bi atom connects four AuO_{4} groups of two different columns. This situation is shown in Fig. 1, were a projection onto the $a b$ plane of the structure is depicted. For the Bi atoms an eightfold coordination of oxygen atoms results. The coordination polyhedron can be described as a distorted tetragonal antiprism as shown in Fig. 2. The partial structure of the bismuth atoms consists of chains of edge sharing tetrahedra. Each tetrahedron of Bi atoms is centered by oxygen. Thus the structure may be de-
scribed as an arrangement of alternating chains of Bi_{4} tetrahedra and columns of AuO_{4} groups.

The crystal structure of $\mathrm{Bi}_{4} \mathrm{Au}_{2} \mathrm{O}_{9}$ can be derived from that of $\mathrm{Bi}_{2} \mathrm{AuO}_{5}$ by quadrupling the a axis and removing half of the oxygen atoms in the centers of the bismuth tetrahedra. The resulting arrangement is shown in Fig. 3. The distribution of occupied and empty tetrahedra and the kind of stacking of the AuO_{4} groups (cf. Fig. 4) leads to a distortion of the original structure, which is also reflected by the first coordination spheres. For the gold atoms the average $\mathrm{Au}-\mathrm{O}$ distances remain nearly unchanged ($d \mathrm{Au}-\mathrm{O}=2.01 \AA$), whereas the individual bond lengths range from 2.00(2) to 2.03(2) \AA for $\mathrm{Au}(1)$ and 1.98(2) to 2.04(2) \AA for $\mathrm{Au}(2)$. The sum of the observed $\mathrm{O}-\mathrm{Au}-\mathrm{O}$

TABLE 5
Selected Bond Lengths (\AA) and Angles (${ }^{\circ}$) for $\mathrm{Bi}_{4} \mathrm{Au}_{2} \mathrm{O}_{9}$

$\mathrm{Au}(1)-\mathrm{O}(8)$	2.00(2)	$\mathrm{O}(1)-\mathrm{Au}(1)-\mathrm{O}(2)$	84.2(6)
$\mathrm{Au}(1)-\mathrm{O}(2)$	2.00(2)	$\mathrm{O}(1)-\mathrm{Au}(1)-\mathrm{O}(9)$	92.7(7)
$\mathrm{Au}(1)-\mathrm{O}(1)$	2.03(2)	$\mathrm{O}(2)-\mathrm{Au}(1)-\mathrm{O}(8)$	93.4(6)
$\mathrm{Au}(1)-\mathrm{O}(9)$	2.03(2)	$\mathrm{O}(8)-\mathrm{Au}(1)-\mathrm{O}(9)$	89.5(7)
$\mathrm{Au}(2)-\mathrm{O}(6)$	1.98(2)	$\mathrm{O}(4)-\mathrm{Au}(2)-\mathrm{O}(6)$	88.8(6)
$\mathrm{Au}(2)-\mathrm{O}(5)$	2.00(2)	$\mathrm{O}(4)-\mathrm{Au}(2)-\mathrm{O}(7)$	94.7(7)
$\mathrm{Au}(2)-\mathrm{O}(4)$	2.01(2)	$\mathrm{O}(5)-\mathrm{Au}(2)-\mathrm{O}(6)$	88.1(7)
$\mathrm{Au}(2)-\mathrm{O}(7)$	2.04(2)	$\mathrm{O}(5)-\mathrm{Au}(2)-\mathrm{O}(7)$	88.3(7)
$\mathrm{Bi}(1)-\mathrm{O}(7)$	2.12(2)	$\mathrm{O}(7)-\mathrm{Bi}(1)-\mathrm{O}(8)$	84.9(6)
$\mathrm{Bi}(1)-\mathrm{O}(8)$	2.16(2)	$\mathrm{O}(5)-\mathrm{Bi}(1)-\mathrm{O}(2)$	168.1(6)
$\mathrm{Bi}(1)-\mathrm{O}(5)$	2.21(2)	$\mathrm{O}(7)-\mathrm{Bi}(1)-\mathrm{O}(5)$	69.9(5)
$\mathrm{Bi}(1)-\mathrm{O}(2)$	2.44(2)	$\mathrm{O}(5)-\mathrm{Bi}(1)-\mathrm{O}(9)$	139.2(5)
$\mathrm{Bi}(1)-\mathrm{O}(5)$	2.72(2)	$\mathrm{O}(8)-\mathrm{Bi}(1)-\mathrm{O}(9)$	67.3(6)
$\mathrm{Bi}(1)-\mathrm{O}(9)$	2.84(2)	$\mathrm{O}(8)-\mathrm{Bi}(1)-\mathrm{O}(5)$	85.2(6)
$\mathrm{Bi}(2)-\mathrm{O}(3)$	2.17(2)	$\mathrm{O}(3)-\mathrm{Bi}(2)-\mathrm{O}(4)$	94.5(5)
$\mathrm{Bi}(2)-\mathrm{O}(4)$	2.30(2)	$\mathrm{O}(4)-\mathrm{Bi}(2)-\mathrm{O}(6)$	66.9(5)
$\mathrm{Bi}(2)-\mathrm{O}(4)$	2.38(2)	$\mathrm{O}(6)-\mathrm{Bi}(2)-\mathrm{O}(6)$	117.9(4)
$\mathrm{Bi}(2)-\mathrm{O}(3)$	2.47(2)	$\mathrm{O}(6)-\mathrm{Bi}(2)-\mathrm{O}(3)$	72.2(5)
$\mathrm{Bi}(2)-\mathrm{O}(6)$	2.56(2)	$\mathrm{O}(7)-\mathrm{Bi}(2)-\mathrm{O}(4)$	146.0(5)
$\mathrm{Bi}(2)-\mathrm{O}(6)$	2.66(2)	$\mathrm{O}(4)-\mathrm{Bi}(2)-\mathrm{O}(3)$	99.3(5)
$\mathrm{Bi}(2)-\mathrm{O}(4)$	2.84(1)	$\mathrm{O}(3)-\mathrm{Bi}(2)-\mathrm{O}(3)$	78.7(5)
		$\mathrm{O}(6)-\mathrm{Bi}(2)-\mathrm{O}(4)$	79.5(4)
$\mathrm{Bi}(3)-\mathrm{O}(1)$	2.16(2)	$\mathrm{O}(1)-\mathrm{Bi}(3)-\mathrm{O}(9)$	81.5(6)
$\mathrm{Bi}(3)-\mathrm{O}(9)$	2.26(2)	$\mathrm{O}(1)-\mathrm{Bi}(3)-\mathrm{O}(2)$	72.7(6)
$\mathrm{Bi}(3)-\mathrm{O}(9)$	2.27(2)	$\mathrm{O}(9)-\mathrm{Bi}(3)-\mathrm{O}(1)$	156.2(6)
$\mathrm{Bi}(3)-\mathrm{O}(2)$	2.39(2)	$\mathrm{O}(1)-\mathrm{Bi}(3)-\mathrm{O}(2)$	144.0(5)
$\mathrm{Bi}(3)-\mathrm{O}(1)$	2.42(2)	$\mathrm{O}(1)-\mathrm{Bi}(3)-\mathrm{O}(9)$	66.8(5)
$\mathrm{Bi}(3)-\mathrm{O}(1)$	2.96 (1)	$\mathrm{O}(9)-\mathrm{Bi}(3)-\mathrm{O}(1)$	100.5(5)
$\mathrm{Bi}(4)-\mathrm{O}(6)$	2.23(2)	$\mathrm{O}(6)-\mathrm{Bi}(4)-\mathrm{O}(7)$	86.1(6)
$\mathrm{Bi}(4)-\mathrm{O}(3)$	2.25(2)	$\mathrm{O}(3)-\mathrm{Bi}(4)-\mathrm{O}(7)$	75.0(6)
$\mathrm{Bi}(4)-\mathrm{O}(7)$	2.41(2)	$\mathrm{O}(6)-\mathrm{Bi}(4)-\mathrm{O}(3)$	71.9(6)
$\mathrm{Bi}(4)-\mathrm{O}(3)$	2.53(2)	$\mathrm{O}(3)-\mathrm{Bi}(4)-\mathrm{O}(3)$	76.2(3)
$\mathrm{Bi}(4)-\mathrm{O}(2)$	2.62(2)	$\mathrm{O}(7)-\mathrm{Bi}(4)-\mathrm{O}(2)$	71.7(5)
$\mathrm{Bi}(4)-\mathrm{O}(5)$	2.62(2)	$\mathrm{O}(6)-\mathrm{Bi}(4)-\mathrm{O}(5)$	69.0(5)
$\mathrm{Bi}(4)-\mathrm{O}(8)$	2.67(2)	$\mathrm{O}(2)-\mathrm{Bi}(4)-\mathrm{O}(5)$	71.0(5)
$\mathrm{Bi}(4)-\mathrm{O}(8)$	2.76(2)	$\mathrm{O}(3)-\mathrm{Bi}(4)-\mathrm{O}(8)$	71.9(5)
		$\mathrm{O}(5)-\mathrm{Bi}(4)-\mathrm{O}(8)$	67.9(5)
		$\mathrm{O}(3)-\mathrm{Bi}(4)-\mathrm{O}(8)$	74.2(6)
		$\mathrm{O}(8)-\mathrm{Bi}(4)-\mathrm{O}(8)$	79.3(4)

TABLE 6
Selected Bond Lengths (\AA) and Angles $\left({ }^{\circ}\right)$ for $\mathrm{Bi}_{2} \mathrm{AuO}_{5}$

$\mathrm{Au}(1)-\mathrm{O}(1)$	$4 \times 2.02(2)$	$\mathrm{O}(1)-\mathrm{Au}(1)-\mathrm{O}(1)$ $\mathrm{O}(1)-\mathrm{Au}(1)-\mathrm{O}(1)$	$4 \times 89.97(4)$ $2 \times 177(2)$
		$\mathrm{O}(1)-\mathrm{Bi}(1)-\mathrm{O}(2)$	$68.7(9)$
$\mathrm{Bi}(1)-\mathrm{O}(1)$	$2 \times 2.34(3)$	$\mathrm{O}(2)-\mathrm{Bi}(1)-\mathrm{O}(1)$	$63.8(5)$
$\mathrm{Bi}(1)-\mathrm{O}(1)$	$2 \times 2.42(2)$	$68.7(9)$	
$\mathrm{Bi}(1)-\mathrm{O}(2)$	$2 \times 2.455(1)$	$\mathrm{O}(1)-\mathrm{Bi}(1)-\mathrm{O}(1)$	$75.4(8)$
$\mathrm{Bi}(1)-\mathrm{O}(1)$	$2 \times 2.69(2)$	$\mathrm{O}(1)-\mathrm{Bi}(1)-\mathrm{O}(1)$	75.
		$\mathrm{O}(1)-\mathrm{Bi}(1)-\mathrm{O}(1)$	$85.8(5)$
		$\mathrm{O}(1)-\mathrm{Bi}(1)-\mathrm{O}(2)$	$89.3(5)$
		$\mathrm{O}(2)-\mathrm{Bi}(1)-\mathrm{O}(2)$	$75.76(4)$
		$\mathrm{O}(1)-\mathrm{Bi}(1)-\mathrm{O}(1)$	$80.2(2)$
$\mathrm{Bi}(1)-\mathrm{Bi}(1)$	$3.7665(1)$		
$\mathrm{Bi}(1)-\mathrm{Au}(1)$	$3.4133(8)$		
$\mathrm{Au}(1)-\mathrm{Au}(1)$	$3.0150(1)$		

FIG. 1. Projection of the crystal structure of $\mathrm{Bi}_{2} \mathrm{AuO}_{5}$ along the c axis. The bonds from Bi to $\mathrm{O}(2)$ are not drawn.

FIG. 2. The coordination of Bi in $\mathrm{Bi}_{2} \mathrm{AuO}_{5}$.

TABLE 7
Anisotropic Displacement Parameters $\left(\AA^{2}\right)$ for $\mathrm{Bi}_{2} \mathrm{AuO}_{5}$

Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
$\mathrm{Bi}(1)$	$0.017(1)$	$0.017(1)$	$0.024(1)$	$0.001(1)$	$0.001(1)$	$-0.008(1)$
$\mathrm{Au}(1)$	$0.008(1)$	$0.008(1)$	$0.011(1)$	0.0	0.0	0.0
$\mathrm{O}(1)$	$0.03(1)$	$0.019(9)$	$0.03(1)$	$-0.007(1)$	$-0.01(1)$	$0.017(9)$
$\mathrm{O}(2)$	$0.05(2)$	$0.05(2)$	$0.05(3)$	0.0	0.0	0.0

Note. The anisotropic displacement factor exponent takes the form $-2 \pi^{2}\left[h^{2} a^{* 2} U_{11}+\cdots+2 h k a^{*} b^{*} U_{12}\right]$.

TABLE 8
Anisotropic Displacement Parameters (\AA^{2}) for $\mathrm{Bi}_{4} \mathrm{Au}_{2} \mathrm{O}_{9}$

Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
$\mathrm{Bi}(1)$	$0.010(1)$	$0.005(1)$	$0.009(1)$	$0.000(1)$	$0.000(1)$	$0.000(1)$
$\mathrm{Bi}(2)$	$0.011(1)$	$0.005(1)$	$0.012(1)$	$-0.001(1)$	$-0.001(1)$	$-0.001(1)$
$\mathrm{Bi}(3)$	$0.010(1)$	$0.006(1)$	$0.011(1)$	$0.000(1)$	$0.000(1)$	$0.000(1)$
$\mathrm{Bi}(4)$	$0.011(1)$	$0.006(1)$	$0.011(1)$	$-0.002(1)$	$0.000(1)$	$-0.001(1)$
$\mathrm{Au}(1)$	$0.008(1)$	$0.004(1)$	$0.009(1)$	$0.000(1)$	$0.000(1)$	$0.000(1)$
$\mathrm{Au}(2)$	$0.007(1)$	$0.003(1)$	$0.008(1)$	$0.000(1)$	$0.000(1)$	$0.000(1)$
$\mathrm{O}(1)$	$0.006(4)$	$0.007(4)$	$0.009(4)$	$0.001(3)$	$0.004(3)$	$0.001(3)$
$\mathrm{O}(2)$	$0.010(5)$	$0.007(4)$	$0.008(4)$	$-0.001(3)$	$-0.001(3)$	$0.000(3)$
$\mathrm{O}(3)$	$0.012(5)$	$0.012(5)$	$0.013(4)$	$-0.002(4)$	$0.000(4)$	$-0.002(4)$
$\mathrm{O}(4)$	$0.010(5)$	$0.010(4)$	$0.011(4)$	$-0.001(3)$	$-0.003(3)$	$0.003(3)$
$\mathrm{O}(5)$	$0.11(5)$	$0.010(4)$	$0.010(4)$	$-0.002(3)$	$-0.001(4)$	$-0.002(4)$
$\mathrm{O}(6)$	$0.011(5)$	$0.007(4)$	$0.006(4)$	$-0.001(3)$	$0.000(1)$	$0.002(3)$
$\mathrm{O}(7)$	$0.011(5)$	$0.003(4)$	$0.010(4)$	$0.001(3)$	$0.004(4)$	$0.000(3)$
$\mathrm{O}(8)$	$0.011(5)$	$0.007(4)$	$0.011(4)$	$-0.002(3)$	$0.000(4)$	$0.000(3)$
$\mathrm{O}(9)$	$0.009(5)$	$0.010(4)$	$0.011(4)$	$0.000(3)$	$0.000(3)$	$-0.001(4)$

Note. The anisotropic displacement factor exponent takes the form $-2 \pi^{2}\left[h^{2} a^{* 2} U_{11}+\cdots+2 h k a^{*} b^{*} U_{12}\right]$.

FIG. 3. Alternating stacking of chains of Bi_{4} tetrahedra and AuO_{4} columns in $\mathrm{Bi}_{4} \mathrm{Au}_{2} \mathrm{O}_{9}$.

FIG. 4. View along [010] upon the unit cell of $\mathrm{Bi}_{4} \mathrm{Au}_{2} \mathrm{O}_{9}$.
angles is 360° within the e.s.d.'s for both atoms. The plausibility of the observed $\mathrm{Au}-\mathrm{O}$ distances was checked by a valence bond sum calculation (20) performed for both atoms. ${ }^{3}$ As a result values of 2.91 and 2.94 for $\mathrm{Au}(1)$ and $\mathrm{Au}(2)$, respectively, were obtained. The smaller content of oxygen compared to $\mathrm{Bi}_{2} \mathrm{AuO}_{5}$ causes a change in the coordination of bismuth by oxygen atoms. Two of the four crystallographically independent bismuth atoms are surrounded by six oxygen atoms forming a distorted octahedron. The coordination polyhedron of $\mathrm{Bi}(4)$ is still a tetragonal antiprism, whereas $\operatorname{Bi}(2)$ is coordinated by seven atoms to form a monocapped trigonal prism (cf. Fig. 5). The individual $\mathrm{Bi}-\mathrm{O}$ distances vary considerably which is not unusual for tervalent bismuth. A valence bond sum calculation for all Bi atoms gives values between 2.81 and 3.17.

The structures of $\mathrm{Bi}_{2} \mathrm{AuO}_{5}$ and $\mathrm{Bi}_{4} \mathrm{Au}_{2} \mathrm{O}_{9}$ both belong

[^2]

FIG. 5. Coordination polyhedron of $\mathrm{Bi}(2)$ in $\mathrm{Bi}_{4} \mathrm{Au}_{2} \mathrm{O}_{9}$.
to the structure family of $\mathrm{Bi}_{2} \mathrm{CuO}_{4}$, which is completed by $\mathrm{Bi}_{2} \mathrm{PdO}_{4}$ and $\mathrm{La}_{4} \mathrm{Au}_{2} \mathrm{O}_{9}$ (21). The basic motif which is common to all these structures is isolated columns of square planar $M \mathrm{O}_{4}$ units, which are twisted by 22.5° against each other. Between these rows there are chains of edge sharing M_{4} tetrahedra. The main difference between the individual members of this structure family is the amount of occupation of the M_{4} tetrahedra by oxygen atoms. The borderline cases are $\mathrm{Bi}_{2} \mathrm{CuO}_{4}$ and $\mathrm{Bi}_{2} \mathrm{PdO}_{4}$ with no tetrahedra occupied on the one hand, and $\mathrm{Bi}_{2} \mathrm{AuO}_{5}$ where all Bi_{4} tetrahedra are centered by oxygen atoms on the other hand. In $\mathrm{Bi}_{4} \mathrm{Au}_{2} \mathrm{O}_{9}$ and $\mathrm{La}_{4} \mathrm{Au}_{2} \mathrm{O}_{9}$, half of all M_{4} polyhedra are centered, but both structures differ in the ordered distribution of the oxygen atoms over the tetrahedral interstices. In Bi_{4} $\mathrm{Au}_{2} \mathrm{O}_{9}$ every second chain of Bi_{4} tetrahedra is not occupied whereas in $\mathrm{La}_{4} \mathrm{Au}_{2} \mathrm{O}_{9}$ there is a regular occupation of every second La_{4} tetrahedron in each chain.

ACKNOWLEDGMENTS

Financial support by the Deutsche Forschungsgemeinschaft and by the Fonds der Chemischen Industrie is gratefully acknowledged.

REFERENCES

1. R. J. Bouchard and J. L. Gillson, Mater. Res. Bull. 6, 669 (1971).
2. A. W. Sleight, Mater. Res. Bull. 9, 1177 (1974).
3. J. M. Longo, P. M. Raccah, J. A. Kafalas, and J. W. Pierce, Mater. Res. Bull. 7, 137 (1972).
4. M. Bortz and M. Jansen, Z. Anorg. Allg. Chem. 619, 1446 (1993).
5. M. Bortz and M. Jansen, Z. Anorg. Allg. Chem. 612, 113 (1992).
6. R. Scholder and H. Stobbe, Z. Anorg. Allg. Chem. 247, 392 (1991).
7. R. Arpe and Hk. Müller-Buschbaum, Z. Anorg. Allg. Chem. 426, 1 (1976).
8. M. T. Weller and D. R. Lines, J. Solid State Chem. 82, 21 (1989).
9. R. Arpe and Hk. Müller-Buschbaum, Z. Naturforsch. B 31, 1708 (1976).
10. P. Conflant, J. C. Boivin, and D. Thomas, Rev. Chem. Miner. 14, 249 (1977).
11. G. Brauer, "Handbuch der Prăparativen Anorganischen Chemie," 3rd ed. Verlag, Stuttgart, Germany, 1978.
12. E. Merck, "Komplexometrische Bestimmungsmethoden mit Titriplex." Darmstadt, Germany, 1984.
13. J. Kopf, CADSHELL, Hamburg, Germany.
14. H. Bärnighausen and W. Herrendorf, Dissertation, W. Herrendorf, Karsruhe, 1993.
15. "International Tables for X-Ray Crystallography," Vol. 4. Kynoch Press, Birmingham, 1974.
16. G. M. Sheldrick, "SHELXS-86 Program for Structure Solution." Universităt Göttingen, Germany, 1986.
17. G. M. Sheldrick, "SHELXL-93 Program for Structure Determination." Universităt Göttingen, Germany, 1993.
18. R. Hund, "KPLOT Program for Plotting and Investigating Crystal Structures." Universităt Bonn, Germany, 1979.
19. M. Jansen and M. Ralle, Ph.D. Thesis, Universităt Bonn, 1993.
20. N. E. Brese and M. O'Keeffe, Acta Crystallogr. B 47, 192 (1991).
21. M. Ralle and M. Jansen, J. Alloys Compounds 203, 7 (1994).

[^0]: ${ }^{1}$ To whom correspondence should be addressed.

[^1]: ${ }^{a} U_{\text {eq }}=\frac{1}{3}\left(U_{11}+U_{22}+U_{33}\right)$.

[^2]: ${ }^{3}$ Bond valence parameter for gold from (19).

